Advertisements
Advertisements
Question
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
Sum
Solution
\[\int\sqrt{x} \left( a x^2 + bx + c \right)dx\]
\[ = \int x^\frac{1}{2} \left( a x^2 + bx + c \right)dx\]
`=∫ (ax^{2 + 1/2} + bx^{1/2+1 }+ c x^{1/2})dx`
`= a∫ x^{5/2 }dx + b∫ x^{3/2 }dx + c∫ x^{1/2 } dx`
`= a [ x^(5/2 + 1)/(5/2+ 1) ]+ b[ x^(3/2+1)/(3/2+ 1) ] + c[ x^(1/2+1)/(1/2 + 1 )]+ C`
\[ = \frac{2a}{7} x^\frac{7}{2} + \frac{2b}{5} x^\frac{3}{2} + \frac{2c}{3} x^\frac{3}{2} + C\]
\[ = \int x^\frac{1}{2} \left( a x^2 + bx + c \right)dx\]
`=∫ (ax^{2 + 1/2} + bx^{1/2+1 }+ c x^{1/2})dx`
`= a∫ x^{5/2 }dx + b∫ x^{3/2 }dx + c∫ x^{1/2 } dx`
`= a [ x^(5/2 + 1)/(5/2+ 1) ]+ b[ x^(3/2+1)/(3/2+ 1) ] + c[ x^(1/2+1)/(1/2 + 1 )]+ C`
\[ = \frac{2a}{7} x^\frac{7}{2} + \frac{2b}{5} x^\frac{3}{2} + \frac{2c}{3} x^\frac{3}{2} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]
\[\int x\sqrt{x^4 + 1} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]
\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int \sin^4 2x\ dx\]
\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]