English

∫ X 3 X 4 − 18 X 2 + 11 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
Sum

Solution

` ∫   {x  dx}/{3 x^4 - 18 x^2 + 11}`
\[\text{ let } x^2 = t\]
\[ \Rightarrow \text{ 2x dx }= dt\]
\[ \Rightarrow \text{ x dx }= \frac{dt}{2}\]
Now, ` ∫   {x  dx}/{3 x^4 - 18 x^2 + 11}`
\[ = \frac{1}{2}\int\frac{dt}{3 t^2 - 18t + 11}\]
\[ = \frac{1}{3 \times 2}\int\frac{dt}{t^2 - 6t + \frac{11}{3}}\]
\[ = \frac{1}{6}\int\frac{dt}{t^2 - 6t + 9 - 9 + \frac{11}{3}}\]
\[ = \frac{1}{6}\int\frac{dt}{\left( t - 3 \right)^2 - \frac{16}{3}}\]
\[ = \frac{1}{6}\int\frac{dt}{\left( t - 3 \right)^2 - \left( \frac{4}{\sqrt{3}} \right)^2}\]
\[ = \frac{1}{6} \times \frac{1}{2 \times \frac{4}{\sqrt{3}}} \text{ log  }\left| \frac{t - 3 - \frac{4}{\sqrt{3}}}{t - 3 + \frac{4}{\sqrt{3}}} \right| + C\]
\[ = \frac{\sqrt{3}}{48} \text{ log  }\left| \frac{x^2 - 3 - \frac{4}{\sqrt{3}}}{x^2 - 3 + \frac{4}{\sqrt{3}}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.16 [Page 90]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.16 | Q 13 | Page 90

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×