Advertisements
Advertisements
Question
Solution
` ∫ {x dx}/{3 x^4 - 18 x^2 + 11}`
\[\text{ let } x^2 = t\]
\[ \Rightarrow \text{ 2x dx }= dt\]
\[ \Rightarrow \text{ x dx }= \frac{dt}{2}\]
Now, ` ∫ {x dx}/{3 x^4 - 18 x^2 + 11}`
\[ = \frac{1}{2}\int\frac{dt}{3 t^2 - 18t + 11}\]
\[ = \frac{1}{3 \times 2}\int\frac{dt}{t^2 - 6t + \frac{11}{3}}\]
\[ = \frac{1}{6}\int\frac{dt}{t^2 - 6t + 9 - 9 + \frac{11}{3}}\]
\[ = \frac{1}{6}\int\frac{dt}{\left( t - 3 \right)^2 - \frac{16}{3}}\]
\[ = \frac{1}{6}\int\frac{dt}{\left( t - 3 \right)^2 - \left( \frac{4}{\sqrt{3}} \right)^2}\]
\[ = \frac{1}{6} \times \frac{1}{2 \times \frac{4}{\sqrt{3}}} \text{ log }\left| \frac{t - 3 - \frac{4}{\sqrt{3}}}{t - 3 + \frac{4}{\sqrt{3}}} \right| + C\]
\[ = \frac{\sqrt{3}}{48} \text{ log }\left| \frac{x^2 - 3 - \frac{4}{\sqrt{3}}}{x^2 - 3 + \frac{4}{\sqrt{3}}} \right| + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]