English

∫ Sin 6 X Cos 8 X D X = - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

Options

  •  tan 7x + C

  • \[\frac{\tan^7 x}{7} + C\]
  • \[\frac{\tan 7x}{7} + C\]
  • sec7 x + C

MCQ

Solution

\[\frac{\tan^7 x}{7} + C\]

\[\text{Let }I = \int\frac{\sin^6 x}{\cos^8 x}dx\]

\[ = \int\frac{\sin^6 x}{\cos^6 x} \times \frac{1}{\cos^2 x}dx\]

\[ = \int \tan^6 x \cdot \sec^2 x dx\]

\[\text{Putting }\tan x = t\]
\[ \Rightarrow \sec^2 x dx = dt\]
\[ \therefore I = \int t^6 \cdot dt\]
\[ = \frac{t^7}{7} + C\]
\[ = \frac{\tan^7 x}{7} + C ............\left( \because t = \tan x \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 201]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 15 | Page 201

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×