Advertisements
Advertisements
Question
Options
tan 7x + C
- \[\frac{\tan^7 x}{7} + C\]
- \[\frac{\tan 7x}{7} + C\]
sec7 x + C
Solution
\[\text{Let }I = \int\frac{\sin^6 x}{\cos^8 x}dx\]
\[ = \int\frac{\sin^6 x}{\cos^6 x} \times \frac{1}{\cos^2 x}dx\]
\[ = \int \tan^6 x \cdot \sec^2 x dx\]
\[\text{Putting }\tan x = t\]
\[ \Rightarrow \sec^2 x dx = dt\]
\[ \therefore I = \int t^6 \cdot dt\]
\[ = \frac{t^7}{7} + C\]
\[ = \frac{\tan^7 x}{7} + C ............\left( \because t = \tan x \right)\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
` ∫ sin x \sqrt (1-cos 2x) dx `
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .