English

∫ Sin 2 X Sin 5 X Sin 3 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
Sum

Solution

\[\int\frac{\sin 2x}{\sin 5x \sin 3x}dx\]
\[ = \int\frac{\sin \left( 5x - 3x \right)}{\sin 5x \sin 3x}dx\]
\[ = \int\frac{\sin 5x \cos 3x - \cos 5x \sin 3x}{\sin 5x \sin 3x}dx\]
\[ = \int \frac{\sin 5x \cos 3x}{\sin 5x \sin 3x} - \frac{\cos 5x \sin 3x}{\sin 5x \sin 3x}dx\]
\[ = \int\left[ \cot 3x - \cot 5x \right] dx\]
\[ =  ∫ cot\ 3x\ dx - \int\cot\ 5x\ dx\]
\[ = \frac{1}{3} \text{ln} \left| \sin 3x \right| - \frac{1}{5} \text{ln }\left| \sin 5x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.08 [Page 48]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.08 | Q 43 | Page 48

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \tan^5 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×