English

If ∫ Sin 8 X − Cos 8 X 1 − 2 Sin 2 X Cos 2 X D X - Mathematics

Advertisements
Advertisements

Question

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]

Options

  • -1/2

  • 1/2

  • -1

  • 1

MCQ

Solution

`−1/2`

 

\[\text{If }\int\left( \frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} \right)dx = a \sin 2x + C ..............(1)\]

\[\text{Considering LHS of eq. (1)}\]

\[ \Rightarrow \int\frac{\left( \sin^4 x - \cos^4 x \right) \left( \sin^4 x + \cos^4 x \right)}{\left( 1 - 2 \sin^2 x \cos^2 x \right)}\]

\[ \Rightarrow \int\frac{\left( \sin^2 x - \cos^2 x \right) \left( \sin^2 x + \cos^2 x \right) \cdot \left( \sin^4 x + \cos^4 x \right) dx}{\left\{ \left( \sin^2 x + \cos^2 x \right)^2 - 2 \sin^2 x \cos^2 x \right\}}\]

\[ \Rightarrow \int\frac{\left( \sin^2 x - \cos^2 x \right) \cdot \left( \sin^4 x + \cos^4 x \right)dx}{\left( \sin^4 x + \cos^4 x + 2 \sin^2 x \cos^2 x - 2 \sin^2 x \cos^2 x \right)}\]

\[ \Rightarrow - \int\frac{\left( \cos^2 x - \sin^2 x \right) \times \left( \sin^4 x + \cos^4 x \right) dx}{\left( \sin^4 x + \cos^4 x \right)}\]

\[ \Rightarrow - \int\cos \left( 2x \right) dx ..............\left( \because \cos^2 x - \sin^2 x = \cos 2x \right) .............(2)\]

\[\text{Comparing the RHS of eq. (1) with eq. (2) we get,} \]

\[a = - \frac{1}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 200]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 8 | Page 200

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int \tan^3 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×