English

∫ 1 a 2 X 2 + B 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{a^2 x^2 + b^2} dx\]
Sum

Solution

\[\int\frac{dx}{a^2 x^2 + b^2}\]
\[ = \frac{1}{a^2}\int\frac{dx}{x^2 + \left( \frac{b}{a} \right)^2} \]
\[ = \frac{1}{a^2} \times \frac{a}{b} \tan^{- 1} \left( \frac{x}{\frac{b}{a}} \right) + C \left[ \therefore \int\frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{- 1} \left( \frac{x}{a} \right) + C \right]\]
\[ = \frac{1}{ab} \tan^{- 1} \left( \frac{ax}{b} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.14 [Page 83]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.14 | Q 3 | Page 83

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int x \cos^2 x\ dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \cos^3 (3x)\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int \sec^6 x\ dx\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×