English

∫ sec 6 x d x - Mathematics

Advertisements
Advertisements

Question

\[\int \sec^6 x\ dx\]
Sum

Solution

\[\text{ Let  I } = \int \sec^6 x\ dx\]
\[ = \int \sec^4 x \cdot \sec^2 x\ dx\]
\[ = \int \left( \sec^2 x \right)^2 \cdot \sec^2 x\ dx\]
\[ = \int \left( 1 + \tan^2 x \right)^2 \sec^2 x\ dx\]
\[\text{ Putting  tan x = t}\]
\[ \Rightarrow \text{ sec}^2\text{ x  dx} = dt\]
\[ \therefore I = \int \left( 1 + t^2 \right)^2 \cdot dt\]
\[ = \int\left( 1 + t^4 + 2 t^2 \right)dt\]
\[ = \int dt + \int t^4 dt + 2\int t^2 dt\]
\[ = t + \frac{t^5}{5} + \frac{2 t^3}{3} + C\]
\[ = \tan x + \frac{1}{5} \tan^5 x + \frac{2}{3} \tan^3 x + C............... \left[ \because t = \tan x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 80 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

` ∫    cos  mx  cos  nx  dx `

 


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int x e^{2x} \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \tan^3 x\ dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×