English

∫ Sin − 1 √ X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int \sin^{- 1} \sqrt{x} dx\]
\[ = \int \frac{\sqrt{x} . \sin^{- 1} \sqrt{x}}{\sqrt{x}}dx\]
\[\text{ Let} \sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[ \therefore I = \int t_{II} . \sin^{- 1} t_I dt\]
\[ = \sin^{- 1} t\int t\ dt - \int\left\{ \frac{d}{dt}\left( \sin^{- 1} t \right)\int t\ dt \right\}dt\]
\[ = 2 \left[ \sin^{- 1} t . \frac{t^2}{2} - \int \frac{1}{\sqrt{1 - t^2}} \times \frac{t^2}{2}dt \right]\]
\[ = \sin^{- 1} t . t^2 - \int \frac{t^2}{\sqrt{1 - t^2}}dt\]
\[ = \sin^{- 1} t . t^2 + \int\left( \frac{1 - t^2 - 1}{\sqrt{1 - t^2}} \right)dt\]
\[ = \sin^{- 1} t . t^2 + \int \sqrt{1 - t^2} dt - \int \frac{dt}{\sqrt{1 - t^2}}\]
\[ = \sin^{- 1} t . t^2 + \frac{t}{2}\sqrt{1 - t^2} + \frac{1}{2} \sin^{- 1} t - \sin^{- 1} t + C\]
\[ = \sin^{- 1} t . t^2 + \frac{t}{2}\sqrt{1 - t^2} - \frac{1}{2} \sin^{- 1} t + C\]
\[ = x . \sin^{- 1} \sqrt{x} + \frac{\sqrt{x}}{2} \sqrt{1 - x} - \frac{1}{2} \sin^{- 1} \left( \sqrt{x} \right) + C \left( \because \sqrt{x} = t \right)\]
\[ = \frac{\left( 2x - 1 \right) \sin^{- 1} \sqrt{x}}{2} + \frac{\sqrt{x - x^2}}{2} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 31 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int {cosec}^3 x\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×