Advertisements
Advertisements
Question
Options
\[2\left( \sin x + x\cos\theta \right) + C\]
- \[2\left( \sin x - x\cos\theta \right) + C\]
\[2\left( \sin x + 2x\cos\theta \right) + C\]
- \[2\left( \sin x - 2x\cos\theta \right) + C\]
Solution
\[2\left( \sin x + x\cos\theta \right) + C\]
\[\text{Let }I = \int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\]
\[ = \int\frac{\left( 2 \cos^2 x - 1 \right) - \left( 2 \cos^2 \theta - 1 \right)}{\cos x - \cos\theta}dx\]
\[ = \int\frac{2 \cos^2 x - 1 - 2 \cos^2 \theta + 1}{\cos x - \cos\theta}dx\]
\[ = \int\frac{2\left( \cos x - \cos\theta \right)\left( \cos x + \cos\theta \right)}{\cos x - \cos\theta}dx\]
\[ = \int2\left( \cos x + \cos\theta \right)dx\]
\[ = 2\left( \sin x + x\cos\theta \right) + C\]
\[\text{Therefore, }\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx = 2\left( \sin x + x\cos\theta \right) + C\]
APPEARS IN
RELATED QUESTIONS
` = ∫1/{sin^3 x cos^ 2x} dx`
Evaluate the following integrals:
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]