English

∫ Cos 2 X − Cos 2 θ Cos X − Cos θ D X is Equal to - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

Options

  • \[2\left( \sin x + x\cos\theta \right) + C\]

  • \[2\left( \sin x - x\cos\theta \right) + C\]
  • \[2\left( \sin x + 2x\cos\theta \right) + C\]

  • \[2\left( \sin x - 2x\cos\theta \right) + C\]
MCQ

Solution

\[2\left( \sin x + x\cos\theta \right) + C\]

 

\[\text{Let }I = \int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\]

\[ = \int\frac{\left( 2 \cos^2 x - 1 \right) - \left( 2 \cos^2 \theta - 1 \right)}{\cos x - \cos\theta}dx\]

\[ = \int\frac{2 \cos^2 x - 1 - 2 \cos^2 \theta + 1}{\cos x - \cos\theta}dx\]

\[ = \int\frac{2\left( \cos x - \cos\theta \right)\left( \cos x + \cos\theta \right)}{\cos x - \cos\theta}dx\]

\[ = \int2\left( \cos x + \cos\theta \right)dx\]

\[ = 2\left( \sin x + x\cos\theta \right) + C\]

\[\text{Therefore, }\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx = 2\left( \sin x + x\cos\theta \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 202]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 31 | Page 202

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

` ∫  tan^3    x   sec^2  x   dx  `

` = ∫1/{sin^3 x cos^ 2x} dx`


Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×