English

∫ X 9 ( 4 X 2 + 1 ) 6 D X is Equal to - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

Options

  • \[ \frac{1}{5x} \left( 4 + \frac{1}{x^2} \right)^{- 5} + C\]

  • \[ \frac{1}{5} \left( 4 + \frac{1}{x^2} \right)^{- 5} + C\]

  • \[ \frac{1}{10x} \left( \frac{1}{x^2} + 4 \right)^{- 5} + C\]

  • \[ \frac{1}{10} \left( \frac{1}{x^2} + 4 \right)^{- 5} + C\]

     

MCQ

Solution

\[ \frac{1}{10} \left( \frac{1}{x^2} + 4 \right)^{- 5} + C\]

 

\[\text{Let }I = \int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]
\[ = \int\frac{x^9}{x^{12} \left( 4 + \frac{1}{x^2} \right)^6}dx\]
\[ = \int\frac{\frac{1}{x^3}}{\left( 4 + \frac{1}{x^2} \right)^6}dx\]
\[\text{Let }\left( 4 + \frac{1}{x^2} \right) = t\]
\[ \text{On differentiating both sides, we get}\]
\[ - \frac{2}{x^3}dx = dt\]
\[ \therefore I = - \frac{1}{2}\int\frac{1}{\left( t \right)^6}dt\]
\[ = - \frac{1}{2}\left( - \frac{1}{5} \right) t^{- 5} + C\]
\[ = \frac{1}{10} \left( 4 + \frac{1}{x^2} \right)^{- 5} + C\]
\[\text{Therefore, }\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx = \frac{1}{10} \left( 4 + \frac{1}{x^2} \right)^{- 5} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 202]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 32 | Page 202

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


`∫     cos ^4  2x   dx `


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x e^x \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×