हिंदी

∫ X 9 ( 4 X 2 + 1 ) 6 D X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

विकल्प

  • \[ \frac{1}{5x} \left( 4 + \frac{1}{x^2} \right)^{- 5} + C\]

  • \[ \frac{1}{5} \left( 4 + \frac{1}{x^2} \right)^{- 5} + C\]

  • \[ \frac{1}{10x} \left( \frac{1}{x^2} + 4 \right)^{- 5} + C\]

  • \[ \frac{1}{10} \left( \frac{1}{x^2} + 4 \right)^{- 5} + C\]

     

MCQ

उत्तर

\[ \frac{1}{10} \left( \frac{1}{x^2} + 4 \right)^{- 5} + C\]

 

\[\text{Let }I = \int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]
\[ = \int\frac{x^9}{x^{12} \left( 4 + \frac{1}{x^2} \right)^6}dx\]
\[ = \int\frac{\frac{1}{x^3}}{\left( 4 + \frac{1}{x^2} \right)^6}dx\]
\[\text{Let }\left( 4 + \frac{1}{x^2} \right) = t\]
\[ \text{On differentiating both sides, we get}\]
\[ - \frac{2}{x^3}dx = dt\]
\[ \therefore I = - \frac{1}{2}\int\frac{1}{\left( t \right)^6}dt\]
\[ = - \frac{1}{2}\left( - \frac{1}{5} \right) t^{- 5} + C\]
\[ = \frac{1}{10} \left( 4 + \frac{1}{x^2} \right)^{- 5} + C\]
\[\text{Therefore, }\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx = \frac{1}{10} \left( 4 + \frac{1}{x^2} \right)^{- 5} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २०२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 32 | पृष्ठ २०२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

` ∫  sec^6   x  tan    x   dx `

\[\int \cot^5 x  \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \cot^4 x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×