Advertisements
Advertisements
प्रश्न
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
योग
उत्तर
\[\int\left( \frac{1 - \cos 2x}{1 + \cos 2x} \right)dx\]
`=∫ (2 sin^2 x) / ( 2 cos^2 x ) dx [∵ 1 - cos 2 θ = 2 sin^2 θ & 1 + cos 2 θ= 2 cos^2 θ]`
\[ = \int \tan^2 \text{x dx} \]
\[ = \int\left( \sec^2 x - 1 \right) dx\]
\[ = \int \sec^2\text{ x dx} - ∫ dx\]
\[ = \tan x - x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{1}{1 - \cos x} dx\]
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]
\[\int\frac{e^{2x}}{1 + e^x} dx\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int x \sec^2 2x\ dx\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .