Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{1 - \cos x} dx\]
योग
उत्तर
\[\int\frac{dx}{1 - \cos x}\]
\[ = \int\frac{dx}{1 - \cos x} \times \frac{1 + \ cosx}{1 + \ cosx}\]
\[ = \int\left( \frac{1 + \cos x}{1 - \cos^2 x} \right)dx\]
\[ = \int\left( \frac{1 + \cos x}{\sin^2 x} \right)dx\]
\[ = \int\left( \frac{1}{\sin^2 x} + \frac{\cos x}{\sin x} \times \frac{1}{\sin x} \right)dx\]
\[ = \int\left( {cosec}^2 x + \text{cosec x }\cot x \right)dx\]
\[ = - \cot x - \text{cosec x} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int\frac{1}{\sin x \cos^3 x} dx\]
Evaluate the following integrals:
\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int\cos\sqrt{x}\ dx\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]
\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]