हिंदी

∫ √ a − √ X 1 − √ a X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]
योग

उत्तर

\[\text{ We  have,} \]

\[I = \int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}} \text{ dx }\]

\[I = \frac{1}{\sqrt{a}}\int\frac{1 + a - 1 - \sqrt{ax}}{1 - \sqrt{ax}} \text{ dx }\]

\[I = \frac{1}{\sqrt{a}}\int\frac{1 - \sqrt{ax}}{1 - \sqrt{ax}} dx + \frac{1}{\sqrt{a}}\int\frac{a - 1}{1 - \sqrt{ax}} \text{ dx }\]

\[I = \frac{1}{\sqrt{a}}\int dx + \frac{a - 1}{\sqrt{a}}\int\frac{1}{1 - \sqrt{ax}} \text{ dx }\]

\[I = \frac{1}{\sqrt{a}}x + \frac{a - 1}{\sqrt{a}}\int\frac{1}{1 - \sqrt{ax}} \text{ dx}\]

\[\text{ Let,} \]

\[ I_1 = \int\frac{1}{1 - \sqrt{ax}} \text{ dx }\]

\[\text{ Put ax = z}^2 \]

\[ \Rightarrow adx = \text{ 2 }zdz\]

\[ I_1 = \frac{1}{a}\int\frac{2z}{1 - z}\text{  dz}\]

\[ I_1 = \frac{1}{a}\int\frac{2z - 2 + 2}{1 - z} \text{ dz }\]

\[ I_1 = \frac{1}{a}\int\frac{2z - 2}{1 - z} \text{ dz } + \frac{1}{a}\int\frac{2}{1 - z} \text{ dz }\]

\[ I_1 = \frac{- 2}{a}\int\frac{1 - z}{1 - z} \text{ dz } + \frac{1}{a}\int\frac{2}{1 - z} \text{ dz }\]

\[ I_1 = \frac{- 2}{a}\int \text{ dz } + \frac{1}{a}\int\frac{2}{1 - z} \text{ dz }\]

\[ I_1 = \frac{- 2}{a}z - \frac{2}{a}\text{ log }\left| 1 - z \right| + C_1 \]

\[ I_1 = \frac{- 2\sqrt{ax}}{a} - \frac{2}{a}\text{ log}\left| 1 - \sqrt{ax} \right| + C_1 \]

\[I = \frac{1}{\sqrt{a}}x + \frac{a - 1}{\sqrt{a}}\left( \frac{- 2\sqrt{ax}}{a} - \frac{2}{a}\text{ log }\left| 1 - \sqrt{ax} \right| \right) + C\]

 

Note: The answer in indefinite integration may vary depending on the integral constant.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 55 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int x \sin x \cos x\ dx\]

 


 
` ∫  x tan ^2 x dx 

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×