हिंदी

∫ √ 1 − X X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]

योग

उत्तर

\[\text{ Let  I } = \int\frac{\sqrt{1 - x}}{\sqrt{x}}dx\]
\[ = \int\left( \frac{\sqrt{1 - x} \cdot \sqrt{1 - x}}{\sqrt{x} \cdot \sqrt{1 - x}} \right) dx\]
\[ = \int\frac{\left( 1 - x \right)}{\sqrt{x - x^2}}dx\]
\[\text{ Let} \left( 1 - x \right) = A\frac{d}{dx}\left( x - x^2 \right) + B\]
\[ \Rightarrow 1 - x = A \left( 1 - 2x \right) + B\]
\[ \Rightarrow 1 - x = - \left( 2A \right) x + A + B\]
\[\text{Equating coefficients of like terms}\]
\[ - 2A = - 1\]
\[ \Rightarrow A = \frac{1}{2}\]
\[\text{ and   A + B = 1 }\]
\[ \Rightarrow \frac{1}{2} + B = 1\]
\[ \therefore B = \frac{1}{2}\]
\[ \therefore I = \int\frac{\frac{1}{2} \left( 1 - 2x \right) + \frac{1}{2}}{\sqrt{x - x^2}}dx\]
\[ = \frac{1}{2}\int\frac{\left( 1 - 2x \right)}{\sqrt{x - x^2}}dx + \frac{1}{2}\int\frac{1}{\sqrt{x - x^2 + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}dx\]
\[ = \frac{1}{2}\int\frac{\left( 1 - 2x \right)}{\sqrt{x - x^2}}dx + \frac{1}{2}\int\frac{1}{\sqrt{\left( \frac{1}{2} \right)^2 - \left( x^2 - x + \frac{1}{2^2} \right)}}dx\]
\[ = \frac{1}{2}\int\frac{\left( 1 - 2x \right)}{\sqrt{x - x^2}}dx + \frac{1}{2}\int\frac{1}{\sqrt{\left( \frac{1}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}dx\]

 

 

\[\text{ Putting x - x}^2 =\text{  t in the first integral }\]

\[ \Rightarrow \left( 1 - 2x \right)\text{  dx } = dt\]

\[ \therefore I = \frac{1}{2}\int\frac{1}{\sqrt{t}}dt + \frac{1}{2}\int\frac{1}{\sqrt{\left( \frac{1}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}dx\]

\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt + \frac{1}{2}\int\frac{dx}{\sqrt{\left( \frac{1}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}\]

\[ = \frac{1}{2} \times 2\text{  t}^\frac{1}{2} + \frac{1}{2} \times \sin^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right) + C................ \left[ \because \int\frac{1}{\sqrt{a^2 - x^2}}dx = \sin^{- 1} \frac{x}{a} + C \right]\]

\[ = \sqrt{t} + \frac{1}{2} \text{ sin}^{- 1} \left( 2x - 1 \right) + C\]

\[ = \sqrt{x - x^2} + \frac{1}{2} \text{ sin}^{- 1} \left( 2x - 1 \right) + C ..................\left[ \because t = x - x^2 \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 54 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x \sin x \cos x\ dx\]

 


\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×