हिंदी

∫ 1 − 3 X 3 X 2 + 4 X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]
योग

उत्तर

\[\int\frac{\left( 1 - 3x \right) dx}{3 x^2 + 4x + 2}\]
\[1 - 3x = A\frac{d}{dx}\left( 3 x^2 + 4x + 2 \right) + B\]
\[1 - 3x = A \left( 6x + 4 \right) + B\]
\[1 - 3x = \left( 6 A \right) x + \text{ 4 A }+ B\]

Comparing the Coefficients of like powers of x

\[\text{ 6 A }= - 3\]
\[A = \frac{- 1}{2}\]
\[\text{ 4 A }+ B = 1\]
\[4 \times \frac{- 1}{2} + B = 1\]
\[B = 3\]

\[1 - 3x = - \frac{1}{2}\left( 6x + 4 \right) + 3\]
\[Now, \int\frac{\left( 1 - 3x \right) dx}{3 x^2 + 4x + 2}\]
\[ = \int\left( \frac{\frac{- 1}{2}\left( 6x + 4 \right) + 3}{3 x^2 + 4x + 2} \right)dx\]
\[ = - \frac{1}{2}\int\frac{\left( 6x + 4 \right) dx}{3 x^2 + 4x + 2} + 3\int\frac{dx}{3 x^2 + 4x + 2}\]
\[ = - \frac{1}{2} I_1 + 3 I_2 \left( \text{ say} \right) . . . \left( 1 \right)\]
\[\text{ where}\]
\[ I_1 = \int\frac{6x + 4}{3 x^2 + 4x + 2} \text{ and }I_2 = \int\frac{dx}{3 x^2 + 4x + 2}\]
\[ I_1 = \int\left( \frac{6x + 4}{3 x^2 + 4x + 2} \right)dx\]
\[\text{ let }3 x^2 + 4x + 2 = t\]
\[ \Rightarrow \left( 6x + 4 \right) dx = dt\]
\[ I_1 = \int\frac{dt}{t}\]
\[ = \text{ log }\left| t \right| + C_1 \]
\[ = \text{ log }\left| 3 x^2 + 4x + 2 \right| + C_1 . . . \left( 2 \right)\]
\[ I_2 = \int\frac{dx}{3 x^2 + 4x + 2}\]
\[ I_2 = \frac{1}{3}\int\frac{dx}{x^2 + \frac{4}{3}x + \frac{2}{3}}\]
\[ I_2 = \frac{1}{3}\int\frac{dx}{x^2 + \frac{4x}{x} + \left( \frac{2}{3} \right)^2 - \left( \frac{2}{3} \right)^2 + \frac{2}{3}}\]
\[ I_2 = \frac{1}{3}\int\frac{dx}{\left( x - \frac{2}{3} \right)^2 - \frac{4}{9} + \frac{2}{3}}\]
\[ I_2 = \frac{1}{3}\int\frac{dx}{\left( x + \frac{2}{3} \right)^2 + \frac{2}{9}}\]
\[ I_2 = \frac{1}{3}\int\frac{dx}{\left( x + \frac{2}{3} \right)^2 + \left( \frac{\sqrt{2}}{3} \right)^2}\]
\[ I_2 = \frac{1}{3} \times \frac{3}{\sqrt{2}} \tan^{- 1} \left( \frac{x + \frac{2}{3}}{\frac{\sqrt{2}}{3}} \right) + C_2 \]
\[ I_2 = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{3x + 2}{\sqrt{2}} \right) + C_2 . . . \left( 3 \right)\]
\[\text{ from } \left( 1 \right), \left( 2 \right)\text{ and }\left( 3 \right)\]
\[\int\frac{\left( 1 - 3x \right) dx}{3 x^2 + 4x + 2}\]
\[ = - \frac{1}{2} \text{ log }\left| 3 x^2 + 4x + 2 \right| + \frac{3 \times 1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{3x + 2}{\sqrt{2}} \right) + C_1 + C_2 \]
\[ = - \frac{1}{2} \text{ log }\left| 3 x^2 + 4x + 2 \right| + \frac{3}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{3x + 2}{\sqrt{2}} \right) + C \left( \text{ Where C } = C_1 + C_2 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.19 | Q 7 | पृष्ठ १०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×