हिंदी

∫ 2 X + 3 √ X 2 + 4 X + 5 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int\frac{\left( 2x + 3 \right) dx}{\sqrt{x^2 + 4x + 5}}\]
\[ = \int\frac{\left( 2x + 4 - 1 \right)}{\sqrt{x^2 + 4x + 5}}dx\]
\[ = \int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 5}} - \int\frac{dx}{\sqrt{x^2 + 4x + 5}}\]
\[ = \int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 5}} - \int\frac{dx}{\sqrt{\left( x + 2 \right)^2 + 1}}\]
\[\text{ Consider, }\]
\[ x^2 + 4x + 5 = t\]
\[ \Rightarrow \left( 2x + 4 \right) dx = dt\]
\[ \therefore I = \int\frac{dt}{\sqrt{t}} - \int\frac{dx}{\sqrt{\left( x + 2 \right)^2 + 1^2}}\]
\[ = \int t^{- \frac{1}{2}} dt - \int\frac{dx}{\sqrt{\left( x + 2 \right)^2 + 1^2}}\]
\[ = \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} - \text{ log }\left| x + 2 + \sqrt{\left( x + 2 \right)^2 + 1} \right| + C\]
\[ = 2\sqrt{x^2 + 4x + 5} - \text{ log }\left| x + 2 + \sqrt{x^2 + 4x + 5} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.21 | Q 16 | पृष्ठ १११

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

` ∫  sec^6   x  tan    x   dx `

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \tan^5 x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×