हिंदी

∫ C O S X − S I N X √ 8 − Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
योग

उत्तर

\[\text{ Let I } = \int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[ = \int\frac{\cos x - \sin x}{\sqrt{9 - 1 - \sin2x}}dx\]
\[ = \int\frac{\cos x - \sin x}{\sqrt{9 - \sin^2 x - \cos^2 x - 2\sin x\cos x}}dx\]
\[ = \int\frac{\cos x - \sin x}{\sqrt{9 - \left( \sin x + \cos x \right)^2}}dx\]
\[ Let \left( \sin x + \cos x \right) = t\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( \cos x - \sin x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{\sqrt{\left( 3 \right)^2 - \left( t \right)^2}}dt\]
\[ = \sin^{- 1} \left( \frac{t}{3} \right) + c\]
\[ = \sin^{- 1} \left( \frac{\sin x + \cos x}{3} \right) + c\]
\[Hence, \int\frac{\cos x - \sin x}{\sqrt{8 - \ sin2x}}dx = \sin^{- 1} \left( \frac{\sin x + \cos x}{3} \right) + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.18 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.18 | Q 18 | पृष्ठ ९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int \tan^3 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×