हिंदी

∫ 1 X Log X ( 2 + Log X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
योग

उत्तर

We have,

\[I = \int\frac{dx}{x \log x\left( 2 + \log x \right)}\]

Putting log x = t

\[ \Rightarrow \frac{1}{x} dx = dt\]

\[ \therefore I = \int\frac{dt}{t \left( t + 2 \right)}\]

\[\text{Let }\frac{1}{t \left( t + 2 \right)} = \frac{A}{t} + \frac{B}{t + 2}\]

\[ \Rightarrow \frac{1}{t \left( t + 2 \right)} = \frac{A\left( t + 2 \right) + Bt}{t \left( t + 2 \right)}\]

\[ \Rightarrow 1 = A \left( t + 2 \right) + Bt\]

Putting t + 2 = 0

\[ \Rightarrow t = - 2\]

\[1 = A \times 0 + B \left( - 2 \right)\]

\[ \Rightarrow B = - \frac{1}{2}\]

Putting t = 0

\[1 = A \left( 0 + 2 \right) + B \times 0\]

\[ \Rightarrow A = \frac{1}{2}\]

Then,

\[I = \frac{1}{2}\int\frac{dt}{t} - \frac{1}{2}\int\frac{dt}{t + 2}\]

\[ = \frac{1}{2} \left[ \log \left| t \right| - \log \left| t + 2 \right| \right] + C\]

\[ = \frac{1}{2} \log \left| \frac{t}{t + 2} \right| + C\]

\[ = \frac{1}{2} \log \left| \frac{\log x}{\log x + 2} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 13 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \cot^4 x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×