Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
उत्तर
`int 1/[ 2 - 3cos2x] dx`
As `cos 2x = 2cos^x - 1`
So `int 1/[ 2 - 3cos2x] dx = int 1/[2 - 3( 2cos^x - 1) ]`
And multiply and divide by sec2x
Then we have `int sec^2x/[5sec^2x - 6]` dx
= `int (sec^2x)/[5( 1 + tan^2x) - 6]`
= `int (sec^2x dx)/( 5tan^2x - 1)`
Let tan x = t, then sec2x dx = dt
Hence `int [sec^2x]/[ 5tan^2x - 1]`
= `int dt/[5t^2 - 1]`
= `1/5 int dt/[t^2 - (1/sqrt5)^2]`
= `1/5 log |[ t - 1/sqrt5 ]/[ t + 1/sqrt5 ]|`
= `1/5 log |[ tan x - 1/sqrt5]/[ tan x + 1/sqrt5 ]| + c`
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]