हिंदी

∫ 1 1 + X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]
योग

उत्तर

\[\int\frac{dx}{1 + x - x^2}\]
\[ = \int\frac{- dx}{x^2 - x - 1}\]
\[ = \int\frac{- dx}{x^2 - x + \frac{1}{4} - \frac{1}{4} - 1}\]
\[ = \int\frac{- dx}{\left( x - \frac{1}{2} \right)^2 - \frac{5}{4}}\]
\[ = \int\frac{dx}{\frac{5}{4} - \left( x - \frac{1}{2} \right)^2}\]
\[ = \int\frac{dx}{\left( \frac{\sqrt{5}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}\]
\[\text{ let x }- \frac{1}{2} = t\]
\[ \Rightarrow dx = dt\]
\[Now, \int\frac{dx}{\left( \frac{\sqrt{5}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}\]
\[ = \int\frac{dt}{\left( \frac{\sqrt{5}}{2} \right)^2 - t^2}\]
\[ = \frac{1}{2 \times \frac{\sqrt{5}}{2}} \text{ log } \left| \frac{\frac{\sqrt{5}}{2} + t}{\frac{\sqrt{5}}{2} - t} \right| + C\]

\[= \frac{1}{\sqrt{5}} \text{ log}\left| \frac{\sqrt{5} + 2t}{\sqrt{5} - 2t} \right| + C\]
\[ = \frac{1}{\sqrt{5}} \text{ log } \left| \frac{\sqrt{5} + 2\left( x - \frac{1}{2} \right)}{\sqrt{5} - 2\left( x - \frac{1}{2} \right)} \right| + C\]
\[ = \frac{1}{\sqrt{5}} \text{ log } \left| \frac{\sqrt{5} - 1 + 2x}{\sqrt{5} + 1 - 2x} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.15 [पृष्ठ ८६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.15 | Q 3 | पृष्ठ ८६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×