मराठी

∫ 1 1 + X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]
बेरीज

उत्तर

\[\int\frac{dx}{1 + x - x^2}\]
\[ = \int\frac{- dx}{x^2 - x - 1}\]
\[ = \int\frac{- dx}{x^2 - x + \frac{1}{4} - \frac{1}{4} - 1}\]
\[ = \int\frac{- dx}{\left( x - \frac{1}{2} \right)^2 - \frac{5}{4}}\]
\[ = \int\frac{dx}{\frac{5}{4} - \left( x - \frac{1}{2} \right)^2}\]
\[ = \int\frac{dx}{\left( \frac{\sqrt{5}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}\]
\[\text{ let x }- \frac{1}{2} = t\]
\[ \Rightarrow dx = dt\]
\[Now, \int\frac{dx}{\left( \frac{\sqrt{5}}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}\]
\[ = \int\frac{dt}{\left( \frac{\sqrt{5}}{2} \right)^2 - t^2}\]
\[ = \frac{1}{2 \times \frac{\sqrt{5}}{2}} \text{ log } \left| \frac{\frac{\sqrt{5}}{2} + t}{\frac{\sqrt{5}}{2} - t} \right| + C\]

\[= \frac{1}{\sqrt{5}} \text{ log}\left| \frac{\sqrt{5} + 2t}{\sqrt{5} - 2t} \right| + C\]
\[ = \frac{1}{\sqrt{5}} \text{ log } \left| \frac{\sqrt{5} + 2\left( x - \frac{1}{2} \right)}{\sqrt{5} - 2\left( x - \frac{1}{2} \right)} \right| + C\]
\[ = \frac{1}{\sqrt{5}} \text{ log } \left| \frac{\sqrt{5} - 1 + 2x}{\sqrt{5} + 1 - 2x} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.15 [पृष्ठ ८६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.15 | Q 3 | पृष्ठ ८६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \tan^3 x\ dx\]

\[\int \tan^5 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×