मराठी

∫ Cot X + Cot 3 X 1 + Cot 3 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]
बेरीज

उत्तर

\[\text{We have}, \]
\[I = \int\left( \frac{\cot x + \cot^3 x}{1 + \cot^3 x} \right) dx\]
\[ = \int\left[ \frac{\cot x \left( 1 + \cot^2 x \right)}{1 + \cot^3 x} \right]dx\]
\[ = \int\left( \frac{\cot x {cosec}^2 x}{1 + \cot^3 x} \right) dx\]
\[\text{Putting} \cot x = t\]
\[ \Rightarrow - \text{ cosec}^2 x\ dx = dt\]
\[ \Rightarrow \text{cosec}^2 x\ dx = - dt\]
\[ \therefore I = - \int\frac{\text{ t  dt}}{1 + t^3}\]
\[ = - \int\frac{\text{ t  dt}}{\left( 1 + t \right) \left( t^2 - t + 1 \right)}\]
\[\text{ Let  } \frac{t}{\left( 1 + t \right) \left( t^2 - t + 1 \right)} = \frac{A}{t + 1} + \frac{Bt + C}{t^2 - t + 1}\]
\[ \Rightarrow \frac{t}{\left( 1 + t \right) \left( t^2 - t + 1 \right)} = \frac{A \left( t^2 - t + 1 \right) + \left( Bt + C \right) \left( t + 1 \right)}{\left( t + 1 \right) \left( t^2 - t + 1 \right)}\]
\[ \Rightarrow t = A \left( t^2 - t + 1 \right) + B t^2 + Bt + Ct + C\]
\[ \Rightarrow t = \left( A + B \right) t^2 + \left( B + C - A \right) t + A + C\]
\[\text{Equating Coefficients of like terms}\]
\[A + B = 0 . . . . . \left( 1 \right)\]
\[B + C - A = 1 . . . . . \left( 2 \right)\]
\[A + C = 0 . . . . . \left( 3 \right)\]
\[\text{Solving} \left( 1 \right), \left( 2 \right) \text{and} \left( 3 \right), \text{we get}\]
\[A = - \frac{1}{3}\]
\[B = \frac{1}{3}\]
\[C = \frac{1}{3}\]
\[ \therefore \frac{t}{\left( 1 + t \right) \left( t^2 - t + 1 \right)} = - \frac{1}{3 \left( t + 1 \right)} + \frac{1}{3} \left( \frac{t + 1}{t^2 - t + 1} \right)\]
\[ \Rightarrow \frac{t}{\left( 1 + t \right) \left( t^2 - t + 1 \right)} = - \frac{1}{3 \left( t + 1 \right)} + \frac{1}{6} \left[ \frac{2t + 2}{t^2 - t + 1} \right]\]
\[ \Rightarrow \frac{t}{\left( 1 + t \right) \left( t^2 - t + 1 \right)} = - \frac{1}{3 \left( t + 1 \right)} + \frac{1}{6} \left[ \frac{2t - 1 + 3}{t^2 - t + 1} \right]\]
\[ \therefore I = - \left[ - \frac{1}{3}\int\frac{dt}{t + 1} + \frac{1}{6}\int\left( \frac{2t - 1}{t^2 - t + 1} \right) dt + \frac{1}{2}\int\frac{dt}{t^2 - t + 1} \right]\]
\[ = + \frac{1}{3}\int\frac{dt}{t + 1} - \frac{1}{6}\int\left( \frac{2t - 1}{t^2 - t + 1} \right) dt - \frac{1}{2}\int\frac{dt}{t^2 - t + \frac{1}{4} - \frac{1}{4} + 1}\]
\[ = \frac{1}{3}\int\frac{dt}{t + 1} - \frac{1}{6}\int\frac{\left( 2t - 1 \right) dt}{\left( t^2 - t + 1 \right)} - \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[\text{ let t}^2 - t + 1 = p\]
\[ \Rightarrow \left( 2t - 1 \right) dt = dp\]
\[ \therefore I = \frac{1}{3}\int\frac{dt}{t + 1} - \frac{1}{6}\int\frac{dp}{p} - \frac{1}{2}\int\frac{dt}{\left( t - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{1}{3} \text{ log} \left| t + 1 \right| - \frac{1}{6} \text{ log} \left| p \right| - \frac{1}{2} \times \frac{2}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{t - \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C\]
\[ = \frac{1}{3} \text{ log }\left| t + 1 \right| - \frac{1}{6} \text{ log }\left| p \right| - \frac{1}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{2t - 1}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{3} \text{ log }\left| \cot x + 1 \right| - \frac{1}{6} \text{ log }\left| \cot^2 x - \cot x + 1 \right| - \frac{1}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{\text{ 2 cot  x} - 1}{\sqrt{3}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 130 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x \cos x\ dx\]

\[\int x \text{ sin 2x dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int \sec^6 x\ dx\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×