Advertisements
Advertisements
प्रश्न
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
बेरीज
उत्तर
\[\text{Let I} = \int\frac{1 - \sin x}{x + \cos x}dx\]
\[\text{Putting x} + \cos x = t\]
\[ \Rightarrow 1 - \sin x = \frac{dt}{dx}\]
\[ \Rightarrow \left( 1 - \sin x \right)dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{ln t} + C\]
\[ = \text{ln }\left| x + \cos x \right| + C \left[ \because t = x + \cos x \right]\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int\frac{1}{1 + \cos 2x} dx\]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int \left( e^x + 1 \right)^2 e^x dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
`int"x"^"n"."log" "x" "dx"`
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
\[\int \sec^4 x\ dx\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
Find: `int (3x +5)/(x^2+3x-18)dx.`