मराठी

∫ ( X + 1 ) ( X − 2 ) √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
बेरीज

उत्तर

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}}dx\]
\[ = \int \left( \frac{x^2 - 2x + x - 2}{\sqrt{x}} \right)dx\]

`=∫((x^2-x-2)/sqrt(x))dx` 
\[ = \int\left( x^\frac{3}{2} - x^\frac{1}{2} - 2 x^{- \frac{1}{2}} \right)dx\]
\[ = \left[ \frac{x^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] - \left[ \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] - 2\left[ \frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = \frac{2}{5} x^\frac{5}{2} - \frac{2}{3} x^\frac{3}{2} - 4 x^\frac{1}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.02 | Q 16 | पृष्ठ १५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×