Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}}dx\]
\[ = \int \left( \frac{x^2 - 2x + x - 2}{\sqrt{x}} \right)dx\]
`=∫((x^2-x-2)/sqrt(x))dx`
\[ = \int\left( x^\frac{3}{2} - x^\frac{1}{2} - 2 x^{- \frac{1}{2}} \right)dx\]
\[ = \left[ \frac{x^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] - \left[ \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] - 2\left[ \frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = \frac{2}{5} x^\frac{5}{2} - \frac{2}{3} x^\frac{3}{2} - 4 x^\frac{1}{2} + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
Write a value of
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to