Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
बेरीज
उत्तर
\[\text{ Let I } = \int\frac{1}{5 - 4 \sin x}dx\]
\[\text{ Putting sin x} = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \therefore I = \int\frac{1}{5 - 4 \times \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{5 \left( 1 + \tan^2 \frac{x}{2} \right) - 8 \tan \frac{x}{2}}dx\]
\[ = \int\frac{\sec^2 \frac{x}{2}}{5 \tan^2 \frac{x}{2} - 8 \tan \frac{x}{2} + 5}dx\]
\[\text{ Putting tan }\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \left( \frac{x}{2} \right) dx = dt\]
\[\Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right) dx = \text{ 2 dt}\]
\[ \therefore I = 2\int\frac{1}{5 t^2 - 8t + 5}dt\]
\[ = \frac{2}{5}\int\frac{1}{t^2 - \frac{8}{5}t + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{t^2 - \frac{8t}{5} + \left( \frac{4}{5} \right)^2 - \left( \frac{4}{5} \right)^2 + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{\left( t - \frac{4}{5} \right)^2 - \frac{16}{25} + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{\left( t - \frac{4}{5} \right)^2 + \left( \frac{3}{5} \right)^2}dt\]
\[ = \frac{2}{5} \times \frac{5}{3} \text{ tan}^{- 1} \left( \frac{t - \frac{4}{5}}{\frac{3}{5}} \right) + C .................\left[ \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \text{ tan}^{- 1} \frac{x}{a} + C \right]\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5t - 4}{3} \right) + C\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5 \tan \frac{x}{2} - 4}{3} \right) + C ......\left[ \because t = \tan \frac{x}{2} \right]\]
\[ \therefore I = 2\int\frac{1}{5 t^2 - 8t + 5}dt\]
\[ = \frac{2}{5}\int\frac{1}{t^2 - \frac{8}{5}t + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{t^2 - \frac{8t}{5} + \left( \frac{4}{5} \right)^2 - \left( \frac{4}{5} \right)^2 + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{\left( t - \frac{4}{5} \right)^2 - \frac{16}{25} + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{\left( t - \frac{4}{5} \right)^2 + \left( \frac{3}{5} \right)^2}dt\]
\[ = \frac{2}{5} \times \frac{5}{3} \text{ tan}^{- 1} \left( \frac{t - \frac{4}{5}}{\frac{3}{5}} \right) + C .................\left[ \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \text{ tan}^{- 1} \frac{x}{a} + C \right]\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5t - 4}{3} \right) + C\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5 \tan \frac{x}{2} - 4}{3} \right) + C ......\left[ \because t = \tan \frac{x}{2} \right]\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{1 + \cos 2x} dx\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^2 - 1} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int \sec^2 x \cos^2 2x \text{ dx }\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int \cot^5 x\ dx\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`