मराठी

∫ 1 Sin X + Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sin x + \sin 2x} dx\]
बेरीज

उत्तर

We have,
\[I = \int\frac{dx}{\sin x + \sin 2x}\]
\[ = \int\frac{dx}{\sin x + 2 \sin x \cos x}\]
\[ = \int\frac{dx}{\sin x \left( 1 + 2 \cos x \right)}\]
\[ = \int\frac{\sin x dx}{\sin^2 x \left( 1 + 2 \cos x \right)}\]
\[ = \int\frac{\sin x dx}{\left( 1 - \cos^2 x \right) \left( 1 + 2 \cos x \right)}\]
\[ = \int\frac{\sin x dx}{\left( 1 - \cos x \right) \left( 1 + \cos x \right) \left( 1 + 2 \cos x \right)}\]
\[\text{Putting }\cos x = t\]
\[ \Rightarrow - \sin x dx = dt\]
\[ \Rightarrow \sin x dx = - dt\]
\[ \therefore I = \int\frac{- dt}{\left( 1 - t \right) \left( 1 + t \right) \left( 1 + 2t \right)}\]
\[ = \int\frac{dt}{\left( t - 1 \right) \left( t + 1 \right) \left( 1 + 2t \right)}\]
\[\text{Let }\frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 1 + 2t \right)} = \frac{A}{t - 1} + \frac{B}{t + 1} + \frac{C}{1 + 2t}\]
\[ \Rightarrow \frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 1 + 2t \right)} = \frac{A \left( t + 1 \right) \left( 1 + 2t \right) + B \left( t - 1 \right) \left( 1 + 2t \right) + C \left( t - 1 \right) \left( t + 1 \right)}{\left( t - 1 \right) \left( t + 1 \right) \left( 1 + 2t \right)}\]
\[ \Rightarrow 1 = A \left( t + 1 \right) \left( 1 + 2t \right) + B \left( t - 1 \right) \left( 1 + 2t \right) + C \left( t - 1 \right) \left( t + 1 \right)\]
\[\text{Putting t + 1 = 0}\]
\[ \Rightarrow t = - 1\]
\[1 = B \left( - 1 - 1 \right) \left( 1 - 2 \right)\]
\[ \Rightarrow 1 = B \left( - 2 \right) \left( - 1 \right)\]
\[ \Rightarrow B = \frac{1}{2}\]
\[\text{Putting t - 1 = 0}\]
\[ \Rightarrow t = 1\]
\[1 = A \left( 1 + 1 \right) \left( 1 + 2 \right)\]
\[ \Rightarrow 1 = A\left( 2 \right)\left( 3 \right)\]
\[ \Rightarrow A = \frac{1}{6}\]
\[\text{Putting 1 + 2t = 0}\]
\[t = - \frac{1}{2}\]
\[ \Rightarrow 1 = A \times 0 + B \times 0 + C \left( - \frac{1}{2} - 1 \right) \left( - \frac{1}{2} + 1 \right)\]
\[1 = C \left( - \frac{3}{2} \right) \left( \frac{1}{2} \right)\]
\[C = - \frac{4}{3}\]
Then,
\[I = \frac{1}{6}\int\frac{dt}{t - 1} + \frac{1}{2}\int\frac{dt}{t + 1} - \frac{4}{3}\int\frac{dt}{1 + 2t}\]
\[ = \frac{1}{6} \log \left| t - 1 \right| + \frac{1}{2} \log \left| t + 1 \right| - \frac{4}{3} \times \frac{\log \left| 1 + 2t \right|}{2} + C\]
\[ = \frac{1}{6} \log \left| t - 1 \right| + \frac{1}{2} \log \left| t + 1 \right| - \frac{2}{3}\log \left| 1 + 2t \right| + C\]
\[ = \frac{1}{6} \log \left| \cos x - 1 \right| + \frac{1}{2} \log \left| \cos x + 1 \right| - \frac{2}{3} \log \left| 1 + 2 \cos x \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 61 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \cot^6 x \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int \sec^6 x\ dx\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×