मराठी

∫ 5 X 2 − 1 X ( X − 1 ) ( X + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
बेरीज

उत्तर

We have,
\[I = \int\frac{\left( 5 x^2 - 1 \right) dx}{x \left( x - 1 \right) \left( x + 1 \right)}\]

\[\text{Let }\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 1}\]

\[ \Rightarrow \frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} = \frac{A \left( x^2 - 1 \right) + Bx \cdot \left( x + 1 \right) + C \cdot x \cdot \left( x - 1 \right)}{x \left( x - 1 \right) \left( x + 1 \right)}\]

\[ \Rightarrow 5 x^2 - 1 = A \left( x^2 - 1 \right) + B \cdot x \left( x + 1 \right) + C \cdot x \cdot \left( x - 1 \right)\]

Putting x = 1

\[ \Rightarrow 5 - 1 = A \times 0 + B \left( 1 \right) \left( 1 + 1 \right) + C \times 0\]

\[ \Rightarrow 4 = B \left( 2 \right)\]

\[ \Rightarrow B = 2\]

Putting x = 0

\[ \Rightarrow 5 \times 0 - 1 = A \left( 0 - 1 \right) + B \times 0 + C \times 0\]

\[ \Rightarrow - 1 = A \left( - 1 \right)\]

\[ \Rightarrow A = 1\]

Putting x + 1 = 0

\[x = - 1\]

\[5 - 1 = A \times 0 + B \times 0 + C \left( - 1 \right) \left( - 2 \right)\]

\[ \Rightarrow C = 2\]

\[ \therefore I = \int\frac{dx}{x} + 2\int\frac{dx}{x - 1} + 2\int\frac{dx}{x + 1}\]

\[ = \log \left| x \right| + 2 \log \left| x - 1 \right| + 2 \log \left| x + 1 \right| + C\]

\[ = \log \left| x \right| + 2 \left\{ \log \left| x^2 - 1 \right| \right\} + C\]

\[ = \log \left| x \left( x^2 - 1 \right)^2 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 19 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int \cot^5 x  \text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×