मराठी

∫ √ 3 X 2 + 4 X + 1 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]
बेरीज

उत्तर

\[\int\sqrt{3 x^2 + 4x + 1} \text{  dx }\]
\[ = \sqrt{3}\int\sqrt{x^2 + \frac{4}{3}x + \frac{1}{3}}\text{  dx }\]
\[ = \sqrt{3}\int\sqrt{x^2 + \frac{4}{3}x + \left( \frac{2}{3} \right)^2 - \left( \frac{2}{3} \right)^2 + \frac{1}{3}} \text{  dx }\]
\[ = \sqrt{3}\int\sqrt{\left( x + \frac{2}{3} \right)^2 - \frac{4}{9} + \frac{1}{3}} \text{  dx }\]
\[ = \sqrt{3}\int\sqrt{\left( x + \frac{2}{3} \right)^2 - \left( \frac{1}{3} \right)^2} \text{  dx }\]
\[ = \sqrt{3} \left[ \frac{1}{2}\left( x + \frac{2}{3} \right)\sqrt{\left( x + \frac{2}{3} \right)^2 - \left( \frac{1}{3} \right)^2} - \frac{1}{2} \times \left( \frac{1}{3} \right)^2 \text{ ln } \left| \left( x + \frac{2}{3} \right) + \sqrt{\left( x + \frac{2}{3} \right)^2 - \left( \frac{1}{3} \right)^2} \right| + C \right] ....................\left[ \because \int \sqrt{x^2 - a^2} dx = \frac{1}{2}x\sqrt{x^2 - a^2} - \frac{1}{2} a^2 \text{ ln 
}\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]
\[ = \frac{1}{6}\left( 3x + 2 \right)\sqrt{3 x^2 + 4x + 1} - \frac{\sqrt{3}}{18}\text{ ln } \left| \left( x + \frac{2}{3} \right) + \sqrt{x^2 + \frac{4}{3}x + \frac{1}{3}} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 87 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \log_{10} x\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×