मराठी

∫ X Sin X Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x \sin x \cos x\ dx\]

 

बेरीज

उत्तर

\[\int x\sin x \cdot \text{ cos x dx }\]
\[ = \frac{1}{2}\int x\left( 2 \sin x \cos x \right) dx\]
\[ = \frac{1}{2}\int x_{} \cdot \sin \left( 2x \right)_{} dx\]
\[\text{Taking x as the first function and sin 2x as the second function} . \]
\[ = \frac{1}{2}\left[ x\int\text{ sin 2x dx } - \int\left\{ \frac{d}{dx}\left( x \right)\int\text{ sin 2x dx } \right\}dx \right]\]
\[ = \frac{1}{2}\left[ x \times \frac{- \text{ cos }\left( 2x \right)}{2} - \int1 \cdot \left( \frac{- \cos 2x}{2} \right)dx \right]\]
\[ = \frac{1}{2}\left[ \frac{- x \text{ cos
}\left( 2x \right)}{2} + \frac{\text{ sin } \left( 2x \right)}{4} \right] + C\]
\[ = \frac{- x \text{ cos } \left( 2x \right)}{4} + \frac{\text{ sin }\left( 2x \right)}{8} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 19 | पृष्ठ १३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×