मराठी

∫ 5 X 2 + 20 X + 6 X 3 + 2 X 2 + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x}\]

\[ = \int\frac{\left( 5 x^2 + 20x + 6 \right) dx}{x \left( x^2 + 2x + 1 \right)}\]

\[ = \int\frac{\left( 5 x^2 + 20x + 6 \right) dx}{x \left( x + 1 \right)^2}\]

\[\text{Let }\frac{5 x^2 + 20x + 6}{x \left( x + 1 \right)^2} = \frac{A}{x} + \frac{B}{x + 1} + \frac{C}{\left( x + 1 \right)^2}\]

\[ \Rightarrow \frac{5 x^2 + 20x + 6}{x \left( x + 1 \right)^2} = \frac{A \left( x + 1 \right)^2 + B \left( x \right) \left( x + 1 \right) + C \left( x \right)}{x \left( x + 1 \right)^2}\]

\[ \Rightarrow 5 x^2 + 20x + 6 = A \left( x^2 + 2x + 1 \right) + B \left( x^2 + x \right) + Cx\]

\[ \Rightarrow 5 x^2 + 20x + 6 = \left( A + B \right) x^2 + \left( 2A + B + C \right) x + A\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 5 . . . . . \left( 1 \right)\]

\[2A + B + C = 20 . . . . . \left( 2 \right)\]

\[ A = 6 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = 6 \])

\[B = - 1\]

\[C = 9\]

\[ \therefore \frac{5 x^2 + 20x + 6}{x \left( x + 1 \right)^2} = \frac{6}{x} - \frac{1}{x + 1} + \frac{9}{\left( x + 1 \right)^2}\]

\[ \Rightarrow I = 6\int\frac{dx}{x} - \int\frac{dx}{x + 1} + 9\int\frac{dx}{\left( x + 1 \right)^2}\]

\[ = 6 \log \left| x \right| - \log \left| x + 1 \right| - \frac{9}{x + 1} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 34 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x^2 \sin^2 x\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{\cos^7 x}{\sin x} dx\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×