मराठी

∫ 2 X + 1 ( X + 1 ) ( X − 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
बेरीज

उत्तर

\[\int\frac{\left( 2x + 1 \right)}{\left( x + 1 \right)\left( x - 2 \right)} dx \]
\[\text{Let }\frac{2x + 1}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{A}{x + 1} + \frac{B}{x - 2} .........(1)\]
\[ \Rightarrow \frac{2x + 1}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{A\left( x - 2 \right) + B\left( x + 1 \right)}{\left( x + 1 \right)\left( x - 2 \right)}\]
\[\text{Then, }\left( 2x + 1 \right) = A\left( x - 2 \right) + B\left( x + 1 \right) ............(2)\]
\[\text{Putting }\left( x - 2 \right) = 0\text{ or }x = 2\text{ in eq. (2) }\]
\[ \Rightarrow 2 \times 2 + 1 = A \times 0 + B\left( 2 + 1 \right)\]
\[ \Rightarrow B = \frac{5}{3}\]
\[\text{Putting }\left( x + 1 \right) = 0\text{ or }x = - 1\text{ in eq. (2)} \]
\[2 \times - 1 + 1 + A\left( - 1 - 2 \right) + B \times 0\]
\[ \Rightarrow - 1 = A\left( - 3 \right)\]
\[ \Rightarrow A = \frac{1}{3}\]
\[\text{Substituting the values of A and B in eq. (1) , we get} \]
\[ \therefore \frac{2x + 1}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{1}{3}\left( x + 1 \right) + \frac{5}{3}\left( x - 2 \right)\]
\[\int\frac{\left( 2x + 1 \right)dx}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{1}{3}\int\frac{1}{x + 1}dx + \frac{5}{3}\int\frac{1}{x - 2}dx\]
\[ = \frac{1}{3} \ln \left| x + 1 \right| + \frac{5}{3} \ln \left| x - 2 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 1 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int {cosec}^3 x\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \cot^4 x\ dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×