मराठी

∫ Sin X √ 1 + Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
बेरीज

उत्तर

\[\text{ We  have ,} \]
\[I = \int\frac{\sin x}{\sqrt{1 + \sin x}} \text{ dx }\]
\[I = \int\frac{2 \sin\frac{x}{2}\cos\frac{x}{2}}{\sqrt{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + \text{ 2 }\sin\frac{x}{2}\cos\frac{x}{2}}} \text{  dx }\]
\[I = \int\frac{2 \sin\frac{x}{2}\cos\frac{x}{2}}{\sqrt{\left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2}} \text{  dx }\]
\[I = \int\frac{2 \sin\frac{x}{2}\cos\frac{x}{2}}{\sin\frac{x}{2} + \cos\frac{x}{2}} \text{  dx }\]
\[I = \int\frac{1 + 2\sin\frac{x}{2} \cos\frac{x}{2} - 1}{\sin x + \cos x} \text{  dx }\]
\[I = \int\frac{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2\sin\frac{x}{2} \cos\frac{x}{2} - 1}{\sin x + \cos x} \text{  dx }\]
\[I = \int\frac{\left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 - 1}{\sin\frac{x}{2} + \cos\frac{x}{2}} \text{  dx }\]
\[I = \int\frac{\left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2}{\sin\frac{x}{2} + \cos\frac{x}{2}} \text{  dx }- \int\frac{1}{\sin\frac{x}{2} + \cos\frac{x}{2}} \text{  dx }\]
\[I = \int\left( \sin\frac{x}{2} + \cos\frac{x}{2} \right) dx - \int\frac{1}{\sin\frac{x}{2} + \cos\frac{x}{2}} \text{  dx }\]
\[I = 2\left( - \cos\frac{x}{2} + \sin\frac{x}{2} \right) + C_1 - \frac{1}{\sqrt{2}}\int\frac{1}{\frac{1}{\sqrt{2}}\left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)} \text{  dx }\]
\[I = 2\left( - \cos\frac{x}{2} + \sin\frac{x}{2} \right) + C_1 - \frac{1}{\sqrt{2}}\int\frac{1}{\sin\frac{x}{2} cos\frac{\pi}{4} + \cos\frac{x}{2} sin\frac{\pi}{4}} \text{  dx }\]
\[I = 2\left( - \cos\frac{x}{2} + \sin\frac{x}{2} \right) + C_1 - \frac{1}{\sqrt{2}}\int\frac{1}{\sin\left( \frac{x}{2} + \frac{\pi}{4} \right)} \text{  dx }\]
\[I = 2\left( - \cos\frac{x}{2} + \sin\frac{x}{2} \right) + C_1 - \frac{1}{\sqrt{2}}\int \text{ cosec} \left( \frac{x}{2} + \frac{\pi}{4} \right) \text{  dx }\]
\[I = 2\left( - \cos\frac{x}{2} + \sin\frac{x}{2} \right) - \sqrt{2}\text{ log}\left| \text{ tan}\left( \frac{x}{4} + \frac{\pi}{8} \right) \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 26 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×