Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I} = \int\frac{a}{b + c e^x}dx\]
` "Dividing numerator and denominator by" e^x `
\[ \Rightarrow I = \int\frac{a e^{- x}}{b e^{- x} + c}dx\]
\[Putting\ e^{- x} = t\]
\[ \Rightarrow - e^{- x} = \frac{dt}{dx}\]
\[ \Rightarrow e^{- x} dx = - dt\]
\[ \therefore I = \int\frac{- a}{bt + c}dt\]
\[ = \frac{- a}{b} \text{ln }\left| bt + c \right| + C \left[ \because \int\frac{1}{ax + b}dx = \frac{1}{a}\text{ln }\left| ax + b \right| + C \right]\]
\[ = \frac{- a}{b} \text{ln} \left| b e^{- x} + c \right| + C \left[ \because t = e^{- x} + C \right]\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
` ∫ \sqrt{tan x} sec^4 x dx `
Evaluate the following integrals:
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int {cosec}^4 2x\ dx\]