मराठी

∫ √ Tan X Sec 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

` ∫    \sqrt{tan x}     sec^4  x   dx `

बेरीज

उत्तर

` ∫    \sqrt{tan x}     sec^4  x   dx `
\[ = \int\sqrt{\tan x} \cdot \sec^2 x \cdot \sec^2 x  \text{ dx }\]
\[ = \int\sqrt{\tan x} \cdot \left( 1 + \tan^2 x \right) \sec^2 x \text{ dx }\]
\[\text{Let }\tan x = t\]
\[ \Rightarrow \sec^2 x \text{ dx  }= dt\]
\[Now, \int\sqrt{\tan x} \cdot \left( 1 + \tan^2 x \right) \sec^2 x \text{ dx }\]
\[ = \int\sqrt{t} \left( 1 + t^2 \right) dt\]
\[ = \int\left( \sqrt{t} + t^\frac{5}{2} \right)dt\]
\[ = \int\left( t^\frac{1}{2} + t^\frac{5}{2} \right)dt\]
\[ = \frac{2}{3} t^\frac{3}{2} + \frac{2}{7} t^\frac{7}{2} + C\]
\[ = \frac{2}{3} \tan^\frac{3}{2} x + \frac{2}{7} \tan^\frac{7}{2} x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.11 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.11 | Q 6 | पृष्ठ ६९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^3}{x - 2} dx\]

\[\int \sin^2\text{ b x dx}\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×