Advertisements
Advertisements
प्रश्न
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
बेरीज
उत्तर
\[\int\left( \frac{x^4 + 1}{x^2 + 1} \right)dx\]
\[ = \int\left( \frac{x^4 - 1 + 1 + 1}{x^2 + 1} \right)dx\]
\[ = \int\left[ \frac{\left( x^4 - 1 \right)}{x^2 + 1} + \frac{2}{x^2 + 1} \right]dx\]
\[ = \int\left[ \frac{\left( x^2 - 1 \right)\left( x^2 + 1 \right)}{\left( x^2 + 1 \right)} + \frac{2}{x^2 + 1} \right]dx\]
\[ = \int\left[ \left( x^2 - 1 \right) + \frac{2}{x^2 + 1} \right]dx\]
\[ = \frac{x^3}{3} - x + 2 \tan^{- 1} \left( x \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int \tan^2 \left( 2x - 3 \right) dx\]
` ∫ sin 4x cos 7x dx `
` ∫ cos 3x cos 4x` dx
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
\[\int \sin^7 x \text{ dx }\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int x\sqrt{x^4 + 1} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int \sin^5 x\ dx\]
\[\int {cosec}^4 2x\ dx\]