मराठी

∫ 1 4 + 3 Tan X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{4 + 3 \tan x} dx\]
बेरीज

उत्तर

\[\text{  Let I }= \int\frac{dx}{4 + 3 \tan x}\]
\[ = \int\frac{dx}{4 + \frac{3 \sin x}{\cos x}}\]
\[ = \int\frac{\text{ cos x } dx}{4 \cos x + 3 \sin x}\]
\[\text{ Consider,} \]
\[\cos x = A \left( 4 \cos x + 3 \sin x \right) + B\frac{d}{dx}\left( 4 \cos x + 3 \sin x \right)\]
\[ \Rightarrow \cos x = A \left( 4 \cos x + 3 \sin x \right) + B \left( - 4 \sin x + 3 \cos x \right)\]
\[ \Rightarrow \cos x = \left( 4A + 3B \right) \cos x + \left( 3A - 4B \right) \sin x\]
\[\text{ Equating the coefficients of like terms }\]
\[4A + 3B = 1 . . . . . \left( 1 \right)\]
\[3A - 4B = 0 . . . . . \left( 2 \right)\]

Solving (1) and (2), we get

\[A = \frac{4}{25} \text{ and B }= \frac{3}{25}\]

\[\int\left[ \frac{\frac{4}{25}\left( 4 \cos x + 3 \sin x \right) + \left( - 4 \sin x + 3 \cos x \right)\frac{3}{25}}{4 \cos x + 3 \sin x} \right]dx\]
\[ = \frac{4}{25}\int dx + \frac{3}{25}\int\left( \frac{- 4 \sin x + 3 \cos x}{4 \cos x + 3 \sin x} \right)dx\]
\[\text{ let 4  cos x + 3 sin x = t}\]
\[ \Rightarrow \left( - 4 \sin x + 3 \cos x \right)dx = dt\]
\[\text{ Then, }\]
\[I = \frac{4}{25}\int dx + \frac{3}{25}\int\frac{dt}{t}\]
\[ = \frac{4x}{25} + \frac{3}{25} \text{  log }\left| t \right| + C\]
\[ = \frac{4x}{25} + \frac{3}{25} \text{ log }\left| 4 \cos x + 3 \sin x \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.24 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.24 | Q 9 | पृष्ठ १२२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int \log_{10} x\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×