मराठी

∫ X 2 √ 3 X + 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
बेरीज

उत्तर

\[\int\frac{x^2 dx}{\sqrt{3x + 4}}\]
\[\text{Let 3x + 4 }= t \]
\[ \Rightarrow x = \frac{t - 4}{3}\]
\[ \Rightarrow 1 = \frac{1}{3} . \frac{dt}{dx}\]
\[ \Rightarrow dx = \frac{dt}{3}\]
\[Now, \int\frac{x^2 dx}{\sqrt{3x + 4}}\]
\[ = \frac{1}{3}\int\frac{\left( \frac{t - 4}{3} \right)^2}{\sqrt{t}}dt\]
\[ = \frac{1}{27}\int\left( \frac{t^2}{\sqrt{t}} - \frac{8t}{\sqrt{t}} + \frac{16}{\sqrt{t}} \right)dt\]


\[ = \frac{1}{27}\int\left( t^\frac{3}{2} - 8 t^\frac{1}{2} + 16 t^{- \frac{1}{2}} \right)dt\]
\[ = \frac{1}{27} \left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} + \frac{8 t^\frac{1}{2} + 1}{\frac{1}{2} + 1} + \frac{16 t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{27} \left[ \frac{2}{5} t^\frac{5}{2} - \frac{8 \times 2}{3} t^\frac{3}{2} + 32 t^\frac{1}{2} \right] + C\]
\[ = \frac{2}{135} \left( t \right)^\frac{5}{2} - \frac{16}{81} t^\frac{3}{2} + \frac{32}{27} t^\frac{1}{2} + C\]
\[ = \frac{2}{135} \left( 3x + 4 \right)^\frac{5}{2} - \frac{16}{81} \left( 3x + 4 \right)^\frac{3}{2} + \frac{32}{27} \left( 3x + 4 \right)^\frac{1}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.10 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.10 | Q 3 | पृष्ठ ६५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int \cos^3 (3x)\ dx\]

\[\int \tan^3 x\ dx\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×