मराठी

∫ Tan − 1 ( √ X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int \tan^{- 1} \sqrt{x} \text{ dx }\]
\[ = \int \frac{\sqrt{x} . \tan^{- 1} \sqrt{x}\text{  dx}}{\sqrt{x}}\]
\[\text{ Let } \sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}} \text{ dx }= dt\]
\[ = \frac{dx}{\sqrt{x}} = 2dt\]
\[ \therefore I = 2\int t_{II} . \tan^{- 1}_I \left( t \right)  \text{  dt }\]
\[ = 2 \left[ \tan^{- 1} t\int\text{  t dt  }- \int\left\{ \frac{d}{dt}\left( \tan^{- 1} t \right)\int \text{ t dt } \right\}dt \right]\]
\[ = 2 \left[ \tan^{- 1} \left( t \right) . \frac{t^2}{2} - \int \frac{1}{1 + t^2} . \frac{t^2}{2}dt \right]\]
\[ = \tan^{- 1} \left( t \right) . t^2 - \int \frac{t^2}{1 + t^2} dt\]
\[ = \tan^{- 1} \left( t \right) . t^2 - \int \left( \frac{1 + t^2 - 1}{1 + t^2} \right)dt\]
\[ = \tan^{- 1} \left( t \right) . t^2 - \int dt + \int\frac{dt}{1 + t^2}\]
\[ = \tan^{- 1} \left( t \right) . t^2 - t + \tan^{- 1} \left( t \right) + C \left( \because \sqrt{x} = t \right)\]
\[ = \tan^{- 1} \left( \sqrt{x} \right) . x - \sqrt{x} + \tan^{- 1} \sqrt{x} + C\]
\[ = \left( x + 1 \right) \tan^{- 1} \sqrt{x} - \sqrt{x} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 48 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \log_{10} x\ dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×