मराठी

Find ∫ 2 X ( X 2 + 1 ) ( X 2 + 2 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
बेरीज

उत्तर

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\text{Let }x^2 = y\]
\[ \Rightarrow 2xdx = dy\]
\[ \Rightarrow dx = \frac{dy}{2x}\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[ = \int\frac{dy}{\left( y + 1 \right) \left( y + 2 \right)^2}\]
\[\text{Let }\frac{1}{\left( y + 1 \right) \left( y + 2 \right)^2} = \frac{A}{y + 1} + \frac{B}{y + 2} + \frac{C}{\left( y + 2 \right)^2} . . . . . \left( 1 \right)\]
\[ \Rightarrow 1 = A \left( y + 2 \right)^2 + B\left( y + 1 \right)\left( y + 2 \right) + C\left( y + 1 \right) . . . . . \left( 2 \right)\]
\[\text{Putting y = - 2 in (2)}\]
\[1 = C\left( - 2 + 1 \right)\]
\[ \Rightarrow C = - 1\]

\[\text{Putting y = - 1 in (2)}\]
\[1 = A \left( - 1 + 2 \right)^2 \]
\[ \Rightarrow 1 = A\left( 1 \right)\]
\[ \Rightarrow A = 1\]

\[\text{Putting y = 0 in (2)}\]
\[1 = 4A + B\left( 2 \right) + C\]
\[ \Rightarrow 1 = 4 + 2B - 1\]
\[ \Rightarrow 1 = 3 + 2B\]
\[ \Rightarrow - 2 = 2B\]
\[ \Rightarrow B = - 1\]

\[\text{Substituting the values of A, B and C in (1)}\]

\[\frac{1}{\left( y + 1 \right) \left( y + 2 \right)^2} = \frac{1}{y + 1} - \frac{1}{y + 2} - \frac{1}{\left( y + 2 \right)^2}\]
\[ \Rightarrow \int\frac{dy}{\left( y + 1 \right) \left( y + 2 \right)^2} = \int\frac{dy}{y + 1} - \int\frac{dy}{y + 2} - \int\frac{dy}{\left( y + 2 \right)^2}\]
\[ = \log\left| y + 1 \right| - \log\left| y + 2 \right| + \frac{1}{y + 2} + C\]

\[\text{Hence, }\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx= \log\left| x^2 + 1 \right| - \log\left| x^2 + 2 \right| + \frac{1}{x^2 + 2} + C\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 56 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int \sin^2\text{ b x dx}\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×