मराठी

∫ X 2 ( X 4 + 4 ) X 2 + 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int\frac{x^2 \left( x^4 + 4 \right)}{\left( x^2 + 4 \right)} dx\]
\[ = \int\left( \frac{x^6 + 4 x^2}{x^2 + 4} \right) dx\]
\[\text{ Now }, \]

\[\text{ Therefore }, \frac{x^2 \left( x^4 + 4 \right)}{\left( x^2 + 4 \right)} = \left( x^4 - 4 x^2 + 20 \right) - \frac{80}{x^2 + 4}\]
\[I = \int\frac{x^2 \left( x^4 + 4 \right)}{\left( x^2 + 4 \right)} dx\]
\[ = \int\left( x^4 - 4 x^2 + 20 \right) dx - 80\int\frac{dx}{x^2 + 2^2}\]
\[ = \int x^4 dx - 4\int x^2 dx + 20\int dx - 80\int\frac{dx}{x^2 + 2^2}\]
\[ = \frac{x^{4 + 1}}{4 + 1} - 4 \left[ \frac{x^3}{3} \right] + 20 \left( x \right) - 80 \times \frac{1}{2} \text{ tan }^{- 1} \left( \frac{x}{2} \right) + C\]
\[ = \frac{x^5}{5} - \frac{4}{3} x^3 + 20x - 40 \text{ tan }^{- 1} \left( \frac{x}{2} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.2 | Q 9 | पृष्ठ १०६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sin^5 x \cos x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×