मराठी

∫ Tan 3 2 X Sec 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^3 \text{2x sec 2x dx}\]
बेरीज

उत्तर

`  ∫   tan^3 \text{x 2x . sec  (2x) dx}`
\[ = \int \tan^2 2x . \text{sec 2x  tan 2x dx}\]
`  ∫    ( \sec^2 \left( 2x \right) - 1 \right)   \text{sec (2x) tan (  2x ) dx `
\[\text{Let sec }\left( 2x \right) = t\]
`  ⇒  sec  ( 2x )  tan   (2x)  ×  2 = {dt}/{dx} `
`  ⇒  sec  ( 2x )  tan   (2x) dx = {dt}/{2} `
\[Now, \int \tan^3\text{ x 2x} . \text{sec} \left( \text{2x }\right)dx\]
\[ = \frac{1}{2}\int\left( t^2 - 1 \right) dt\]
\[ = \frac{1}{2}\left[ \frac{t^3}{3} - t \right] + C\]
\[ = \frac{1}{2} \left[ \frac{\sec^3 \left( 2x \right)}{3} - \text{sec}\left( \text{2x }\right) \right] + C\]
\[ = \frac{1}{6} \text{sec}^3 \left( \text{2x} \right) - \frac{\text{sec} \left( \text{2x }\right)}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.09 | Q 62 | पृष्ठ ५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int2 x^3 e^{x^2} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int \tan^5 x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×