मराठी

∫ Sin − 1 ( 3 X − 4 X 3 ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
बेरीज

उत्तर

\[\text{We have}, \]

\[I = \int \sin^{- 1} \left( 3x - 4 x^3 \right)dx\]

\[\text{ Putting x }= \sin \theta \Rightarrow \theta = \sin^{- 1} x\]

\[ \Rightarrow dx = \cos \text{  θ  dθ}\]

\[ \therefore I = \int \sin^{- 1} \left( 3 \sin \theta - 4 \sin^3 \theta \right) \cos \text{  θ  dθ}\]

\[ = \int \sin^{- 1} \left( \sin 3\theta \right) \cos \text{  θ  dθ}\]

\[ = 3\int \theta_I \text{ cos}_{II} \text{  θ  dθ}\]

\[ = 3 \left[ \theta \left( \sin \theta \right) - \int1 \sin \text{  θ  dθ} \right]\]

\[ = 3\left[ \theta \sin \theta + \cos \theta \right] + C\]

\[ = 3\left[ \theta \sin \theta + \sqrt{1 - \sin^2 \theta} \right] + C\]

\[ = 3 \left[ \sin^{- 1} x \times x + \sqrt{1 - x^2} \right] + C\]

\[ = 3 \left[ x \sin^{- 1} x + \sqrt{1 - x^2} \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 114 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×