मराठी

∫ 1 x √ 1 + x n dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
बेरीज

उत्तर

\[\text{We have}, \]
\[I = \int\frac{dx}{x \sqrt{1 + x^n}}\]
\[ = \int\frac{x^{n - 1} dx}{x^{n - 1}\text{  x}^1 \sqrt{1 + x^n}}\]
\[ = \int\frac{x^{n - 1} dx}{x^n \sqrt{1 + x^n}}\]
\[\text{Putting  x}^n = t\]
\[ \Rightarrow \text{ n  x}^{n - 1} dx = dt\]
\[ \Rightarrow x^{n - 1} \text{ dx} = \frac{dt}{n}\]
\[ \therefore I = \frac{1}{n}\int\frac{dt}{t \sqrt{1 + t}}\]
\[\text{ let 1 + t = p}^2 \]
\[ \Rightarrow \text{ dt = 2p dp }\]
\[ \therefore I = \frac{1}{n}\int\frac{\text{ 2p dp}}{\left( p^2 - 1 \right) p}\]
\[ = \frac{2}{n}\int\frac{dp}{p^2 - 1^2}\]
\[ = \frac{2}{n} \times \frac{1}{2} \text{ log} \left| \frac{p - 1}{p + 1} \right| + C\]
\[ = \frac{1}{n} \text{ log} \left| \frac{\sqrt{1 + t} - 1}{\sqrt{1 + t} + 1} \right| + C\]
\[ = \frac{1}{n} \text{ log } \left| \frac{\sqrt{1 + x^n} - 1}{\sqrt{1 + x^n} + 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 101 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \tan^5 x\ dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×