Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[I = \int\frac{dx}{x \left( x^n + 1 \right)}\]
\[ = \int\frac{x^{n - 1} dx}{x^{n - 1} x \left( x^n + 1 \right)}\]
\[ = \int\frac{x^{n - 1} dx}{x^n \left( x^n + 1 \right)}\]
Putting `x^n = t`
\[ \Rightarrow n x^{n - 1} dx = dt\]
\[ \Rightarrow x^{n - 1} dx = \frac{dt}{n}\]
\[ \therefore I = \frac{1}{n}\int\frac{dt}{t \left( t + 1 \right)}\]
\[\text{Let }\frac{1}{t \left( t + 1 \right)} = \frac{A}{t} + \frac{B}{t + 1}\]
\[ \Rightarrow \frac{1}{t \left( t + 1 \right)} = \frac{A \left( t + 1 \right) + Bt}{t \left( t + 1 \right)}\]
\[ \Rightarrow 1 = A \left( t + 1 \right) + Bt\]
Putting `t + 1 = 0`
\[ \Rightarrow t = - 1\]
\[1 = A \times 0 + B \left( - 1 \right)\]
\[ \Rightarrow B = - 1\]
Putting `t = 0`
\[1 = A \left( 0 + 1 \right) + B \times 0\]
\[ \Rightarrow A = 1\]
Then,
\[I = \frac{1}{n}\int\frac{dt}{t} - \frac{1}{n}\int\frac{dt}{t + 1}\]
\[ = \frac{1}{n} \log \left| t \right| - \frac{1}{n}\log \left| t + 1 \right| + C\]
\[ = \frac{1}{n} \log \left| \frac{t}{t + 1} \right| + C\]
\[ = \frac{1}{n} \log \left| \frac{x^n}{x^n + 1} \right| + C\]
APPEARS IN
संबंधित प्रश्न
\[\int \tan^2 \left( 2x - 3 \right) dx\]
`∫ cos ^4 2x dx `
Evaluate the following integral:
\[\int \sec^4 x\ dx\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
Find: `int (3x +5)/(x^2+3x-18)dx.`