मराठी

∫ 1 X ( X N + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{dx}{x \left( x^n + 1 \right)}\]

\[ = \int\frac{x^{n - 1} dx}{x^{n - 1} x \left( x^n + 1 \right)}\]

\[ = \int\frac{x^{n - 1} dx}{x^n \left( x^n + 1 \right)}\]

Putting `x^n = t`

\[ \Rightarrow n x^{n - 1} dx = dt\]

\[ \Rightarrow x^{n - 1} dx = \frac{dt}{n}\]

\[ \therefore I = \frac{1}{n}\int\frac{dt}{t \left( t + 1 \right)}\]

\[\text{Let }\frac{1}{t \left( t + 1 \right)} = \frac{A}{t} + \frac{B}{t + 1}\]

\[ \Rightarrow \frac{1}{t \left( t + 1 \right)} = \frac{A \left( t + 1 \right) + Bt}{t \left( t + 1 \right)}\]

\[ \Rightarrow 1 = A \left( t + 1 \right) + Bt\]

Putting `t + 1 = 0`

\[ \Rightarrow t = - 1\]

\[1 = A \times 0 + B \left( - 1 \right)\]

\[ \Rightarrow B = - 1\]

Putting `t = 0`

\[1 = A \left( 0 + 1 \right) + B \times 0\]

\[ \Rightarrow A = 1\]

Then,

\[I = \frac{1}{n}\int\frac{dt}{t} - \frac{1}{n}\int\frac{dt}{t + 1}\]

\[ = \frac{1}{n} \log \left| t \right| - \frac{1}{n}\log \left| t + 1 \right| + C\]

\[ = \frac{1}{n} \log \left| \frac{t}{t + 1} \right| + C\]

\[ = \frac{1}{n} \log \left| \frac{x^n}{x^n + 1} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 23 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


`∫     cos ^4  2x   dx `


\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int \tan^3 x\ dx\]

\[\int \cot^5 x\ dx\]

\[\int \sin^5 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×