मराठी

∫ 1 3 + 4 Cot X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{3 + 4 \cot x} dx\]
बेरीज

उत्तर

\[\text{ Let I }= \int\frac{1}{3 + 4 \cot x}dx\]
\[ = \int\frac{1}{3 + \frac{4 \cos x}{\sin x}}dx\]
\[ = \int\frac{\sin x}{3 \sin x + 4 \cos x}dx\]
\[\text{ Let sin x = A }\left( 3 \sin x + 4 \cos x \right) + B \left( 3 \cos x - 4 \sin x \right) . . . (1)\]
\[ \Rightarrow \sin x = \left( 3A - 4B \right) \sin x + \left( 4A + 3B \right) \cos x\]
\[\text{By comparing the coefficients of both sides we get} , \]
\[3A - 4B = 1 . . . \left( 2 \right)\]
\[4A + 3B = 0 . . . \left( 3 \right)\]

Multiplying eq (2) by 3 and equation (3) by 4 , then by adding them we get

\[9A - 12B + 16A + 12B = 3 + 0\]
\[ \Rightarrow 25A = 3\]
\[ \Rightarrow A = \frac{3}{25}\]
\[\text{  Putting value of A in eq }\left( 3 \right) \text{ we get,} \]
\[4 \times \frac{3}{25} + 3B = 0\]
\[ \Rightarrow 3B = - \frac{12}{25}\]
\[ \Rightarrow B = - \frac{4}{25}\]

\[\text{ Thus, by substituting the value of A and B in eq (1) we get }\]
\[I = \int\left[ \frac{\frac{3}{25}\left( 3 \sin x + 4 \cos x \right) - \frac{4}{25}\left( 3 \cos x - 4 \sin x \right)}{3 \sin x + 4 \cos x} \right]dx\]
\[ = \frac{3}{25}\int dx - \frac{4}{25}\int\left( \frac{3 \cos x - 4 \sin x}{3 \sin x + 4 \cos x} \right)dx\]
\[\text{  Putting   3  sin x + 4  cos x = t}\]
\[ \Rightarrow \left( 3 \cos x - 4 \sin x \right)dx = dt\]
\[ \therefore I = \frac{3}{25}\int dx - \frac{4}{25}\int\frac{dt}{t}\]
\[ = \frac{3}{25}x - \frac{4}{25} \text{ ln }\left| t \right| + C\]
\[ = \frac{3x}{25} - \frac{4}{25} \text{ ln }\left| 3 \sin x + 4 \cos x \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.24 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.24 | Q 7 | पृष्ठ १२२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

` ∫   cos  3x   cos  4x` dx  

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×