मराठी

∫ 1 7 + 5 Cos X D X = - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{7 + 5 \cos x} dx =\]

पर्याय

  • \[\frac{1}{\sqrt{6}} \tan^{- 1} \left( \frac{1}{\sqrt{6}}\tan\frac{x}{2} \right) + C\]
  • \[\frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{1}{\sqrt{3}}\tan\frac{x}{2} \right) + C\]

  • \[\frac{1}{4} \tan^{- 1} \left( \tan\frac{x}{2} \right) + C\]
  • \[\frac{1}{7} \tan^{- 1} \left( \tan\frac{x}{2} \right) + C\]
MCQ

उत्तर

\[\frac{1}{\sqrt{6}} \tan^{- 1} \left( \frac{1}{\sqrt{6}}\tan\frac{x}{2} \right) + C\]
 
 
\[\text{Let }I = \int\frac{dx}{7 + 5 \cos x}\]

\[\text{Putting }\cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \therefore I = \int\frac{dx}{7 + 5 \times \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}\]
\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right) dx}{7\left( 1 + \tan^2 \frac{x}{2} \right) + 5 - 5 \tan^2 \frac{x}{2}}\]
\[ = \int\frac{\sec^2 \frac{x}{2} dx}{2 \tan^2 \frac{x}{2} + 12}\]
\[ = \frac{1}{2}\int\frac{\sec^2 \frac{x}{2}dx}{\tan^2 \frac{x}{2} + \left( \sqrt{6} \right)^2}\]
\[\text{Let }\tan \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right) dx = 2 dt\]
\[ \therefore I = \frac{1}{2}\int\frac{2 dt}{t^2 + \left( \sqrt{6} \right)^2}\]
\[ = \frac{1}{\sqrt{6}} \tan^{- 1} \left( \frac{t}{\sqrt{6}} \right) + C ................\left( \because \int\frac{1}{a^2 + x^2} = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right)\]
\[ = \frac{1}{\sqrt{6}} \tan^{- 1} \left( \frac{\tan \frac{x}{2}}{\sqrt{6}} \right) + C .............\left( \because t = \tan \frac{x}{2} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २०१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 16 | पृष्ठ २०१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×