Advertisements
Advertisements
प्रश्न
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
बेरीज
उत्तर
\[\int\left( \frac{1 - \cos x}{1 + \cos x} \right)dx\]
\[ = \int\frac{\left( 1 - \cos x \right)^2}{1 - \cos^2 x}dx\]
\[ = \int\frac{1 + \cos^2 x - 2\cos x}{\sin^2 x}dx\]
\[ = \int \left( \frac{1}{\sin^2 x} + \frac{\cos^2 x}{\sin^2 x} - \frac{2\cos x}{\sin^2 x} \right)dx\]
\[ = \int \left( {cosec}^2 x + \cot^2 x - 2\cot x . \text{cosec x} \right)dx\]
\[ = \int \left( {cosec}^2 x + {cosec}^2 x - 1 - 2\cot x . cosec x \right)dx\]
\[ = \int \left( 2 {cosec}^2 x - 1 - 2\cot x . \text{cosec x} \right)dx\]
\[ = \int2 {cosec}^2 x dx - \int1 dx - \int2\cot x . \text{cosec x} dx\]
\[ = - 2\cot x - x + \text{2 cosec x} + C\]
\[ = 2\left( \text{cosec x }- \cot x \right) - x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
`int"x"^"n"."log" "x" "dx"`
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int \sin^5 x\ dx\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int \log_{10} x\ dx\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx}\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]