मराठी

∫ 3 X + 5 X 3 − X 2 − X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{\left( 3x + 5 \right)dx}{x^3 - x^2 - x + 1}\]

\[ = \int\frac{\left( 3x + 5 \right)dx}{x^2 \left( x - 1 \right) - 1\left( x - 1 \right)}\]

\[ = \int\frac{\left( 3x + 5 \right)dx}{\left( x^2 - 1 \right) \left( x - 1 \right)}\]

\[ = \int\frac{\left( 3x + 5 \right)dx}{\left( x - 1 \right) \left( x + 1 \right) \left( x - 1 \right)}\]

\[ = \int\frac{\left( 3x + 5 \right)dx}{\left( x - 1 \right)^2 \left( x + 1 \right)}\]

\[\text{Let }\frac{3x + 5}{\left( x - 1 \right)^2 \left( x + 1 \right)} = \frac{A}{x + 1} + \frac{B}{x - 1} + \frac{C}{\left( x - 1 \right)^2}\]

\[ \Rightarrow \frac{3x + 5}{\left( x - 1 \right)^2 \left( x + 1 \right)} = \frac{A \left( x - 1 \right)^2 + B\left( x + 1 \right) \left( x - 1 \right) + C\left( x + 1 \right)}{\left( x + 1 \right) \left( x - 1 \right)^2}\]

\[ \Rightarrow 3x + 5 = A\left( x^2 - 2x + 1 \right) + B\left( x^2 - 1 \right) + Cx + C\]

\[ \Rightarrow 3x + 5 = \left( A + B \right) x^2 + \left( - 2A + C \right)x + \left( A - B + C \right)\]

\[\text{Equating coefficient of like terms}\]

\[A + B = 0 . . . . . \left( 1 \right)\]

\[ - 2A + C = 3 . . . . . \left( 2 \right)\]

\[A - B + C = 5 . . . . . \left( 3 \right)\]

\[\text{Solving these three equations, we get}\]

\[A = \frac{1}{2}\]

\[B = - \frac{1}{2}\]

\[C = 4\]

\[ \therefore \frac{3x + 5}{\left( x - 1 \right)^2 \left( x + 1 \right)} = \frac{1}{2\left( x + 1 \right)} - \frac{1}{2\left( x - 1 \right)} + \frac{4}{\left( x - 1 \right)^2}\]

\[ \Rightarrow I = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{dx}{x - 1} + 4\int \left( x - 1 \right)^{- 2} dx\]

\[ = \frac{1}{2}\log \left| x + 1 \right| - \frac{1}{2}\log \left| x - 1 \right| - \frac{4}{\left( x - 1 \right)} + C'\]

\[ = \frac{1}{2}\log \left| \frac{x + 1}{x - 1} \right| - \frac{4}{x - 1} + C'\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 43 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

`∫     cos ^4  2x   dx `


\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×