Advertisements
Advertisements
प्रश्न
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
पर्याय
2 loge cos (xex) + C
sec (xex) + C
tan (xex) + C
tan (x + ex) + C
MCQ
उत्तर
tan (xex) + C
\[\text{Let }I = \int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)}dx\]
\[\text{Putting }x e^x = t\]
\[ \Rightarrow \left( 1 \cdot e^x + x e^x \right)dx = dt\]
\[ \Rightarrow e^x \left( 1 + x \right)dx = dt\]
\[ \therefore I = \int\frac{dt}{\cos^2 t}\]
\[ = \int \sec^2 t dt\]
\[ = \tan t + C\]
\[ = \tan \left( x e^x \right) + C ............\left( \because t = x e^x \right)\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int \left( \tan x + \cot x \right)^2 dx\]
If f' (x) = 8x3 − 2x, f(2) = 8, find f(x)
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
` ∫ cos mx cos nx dx `
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int\frac{e^{2x}}{1 + e^x} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]
\[\int\frac{1}{x^2 + 6x + 13} dx\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int x^3 \text{ log x dx }\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int \tan^4 x\ dx\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]